Instructor : Bogdan Chlebus Lecture 20 : Markov Chains
نویسنده
چکیده
If X0 = i then we say that i is the initial state of process X. If Xn = j then process X is in state j in step n, for n > 0. If Xn−1 = k and Xn = ` then process X enters state ` from state k in step n, for n > 0. Let us consider two examples of a process X = (X0, X1, X2, . . .) where Xi ∈ {0, 1}. One is when the random variables X0, X1, X2, . . . are independent and determined by tosses of a coin. Another is when the random variables X0, X1, X2, . . . are determined by time completely, for instance, X2i = 0 and X2i+1 = 1, for all natural numbers i.
منابع مشابه
Random Walks and Brownian Motion Instructor :
In this lecture we compute asumptotics estimates for the Green's function and apply it to the exiting annuli problem. Also we define Capacity, Polar set Prove the B-P-P theorem of Martin's Capacity for Markov chains[3] and use apply it on the intersection of RW problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017